

Organic Chemistry Revision Sheets Alkenes | Electrophilic Addition (with Br₂)

Reaction

REACTANTS: Alkene and Bromine (Br.)

CONDITIONS: Non-polar organic solvent (or pure liquid bromine)

PRODUCT: Dibromoalkane

REACTION TYPE: Electrophilic Addition

REACTION: (example of ethene)

Alkene

Dibromoalkane

Mechanism

 $\mathrm{Br_2}$ acts as an electrophile so the bromine-bromine bond is polarised by the carbon-carbon double bond so the bromine atom with a partial positive charge accepts an electron pair from the carbon-carbon double bond. During the reaction the carbon-carbon double bond breaks, forming a postively charged carbon (carbocation). The negatively charged bromide ion bonds with the carbocation. $\mathrm{Br_2}$ is 'added' across the double carbon-carbon bond. *Addition reaction.*

- The high electron density in the carbon-carbon double bond (pi-bond) polarises the bromine molecule to create the Br^{δ+} electrophile.
- This reaction is often used to identify an alkene as the colour of bromine water changes from orange / brown to colourless when mixed with an alkene (due to the above reaction).

Reaction

REACTANTS: Alkene and HBr (Hydrogen Bromide)

PRODUCT(S): Bromoalkane

REACTION TYPE: Electrophilic Addition

REACTION: (example of ethene)

Mechanism

HBr acts as an electrophile because its hydrogen atom (with a partial positive charge) accepts an electron pair from the carbon-carbon double bond. During the reaction the carbon-carbon double bond breaks, forming a postively charged carbon ion (carbocation). The negatively charged bromide ion bonds with the carbocation. HBr is 'added' across the carbon-carbon double bond. **Addition reaction.**

- If a primary or secondary carbocation can be formed during the reaction, the secondary carbocation will form more readily than the primary carbocation - creating 'major' and 'minor' products*.
- The secondary carbocation is more stable due to increased positive inductive effect from neighbouring alkyl chains.
- *The product mixture will contain more of the major product than the minor product.

Benzene | Electrophilic Substitution, Friedel-Crafts (Acylation)

Reaction

REACTANTS: Benzene and Acyl Chloride **CONDITIONS:** Warm and AlCl₂ catalyst

PRODUCT: (Aromatic) Ketone

REACTION TYPE: Electrophilic Substitution, Acylation

Mechanism

Acylium (RCO⁺) ion acts as an electrophile due to its carbocation accepting an electron pair from the delocalised ring of electrons in the benzene ring. A carbon-carbon bond forms. The carbon-hydrogen bond breaks to give the electron pair back to the ring of delocalised electrons. RCO⁺ ion replaces H on benzene ring. **Substitution reaction**.

Notes:

• Acylium (RCO+) ion is formed by reacting an acyl chloride with a halogen carrier (AICI,

H⁺ ion removed from benzene ring combines with [AlCl₄]⁻ to reform AlCl₃ catalyst and HCl is formed:

Benzene | Electrophilic Substitution, Friedel-Crafts (Alkylation)

Reaction

REACTANTS: Benzene and Halogenoalkane **CONDITIONS:** Warm and AICl₂ catalyst

PRODUCT: Alkylbenzene

REACTION TYPE: Electrophilic Substitution, Alkylation

Mechanism

Alkyl (R⁺) ion acts as an electrophile due to its carbocation accepting an electron pair from the delocalised ring of electrons in the benzene ring. Carbon-carbon bond forms. Carbon-hydrogen bond breaks to give electron pair back to delocalised ring of electrons. R⁺ ion replaces H on benzene ring. **Substitution reaction**.

$$+R$$
 $+H^{\dagger}$

Notes:

Alkyl (R+) ion is formed by reacting a halogenoalkane with a halogen carrier (AICl₃)

H⁺ ion removed from benzene ring combines with [AlCl₄]⁻ to reform AlCl₃ catalyst and HCl is formed

Benzene | Electrophilic Substitution (Halogenation, with Br₂)

Reaction

REACTANTS: Benzene and Halogen

CONDITIONS: Halogen carrier (AICI₂, AIBr₂ or Fe)

PRODUCT: Halogenated Arene (chloro-benzene, bromo-benzene)

REACTION TYPE: Electrophilic Substitution, *Halogenation*

Benzene Bromobenzene

Mechanism

Bromine molecule acts as an electrophile because it is polarised sufficiently by a halogen carrier (AlBr₃) and accepts an electron pair from the delocalised ring of electrons in the benzene ring. A carbon-bromine bond forms. The carbon-hydrogen bond breaks to the give electron pair back to delocalised ring of electrons. Br replaces H on benzene ring. **Substitution reaction**.

- Benzene is unable to undergo halogenation without a halogen carrier as the delocalised electron ring is unable to polarilse the halogen moleucle enough to form an electrophile.
- The halogen carrier poalrises the halogen molecule to the point of enabling one of the halogen atoms (now with a partial positive charge) to act as an electrophile and accept a pair of electrons from benzene.

Benzene | Electrophilic Substitution, (Nitration, with HNO₂)

Reaction

REACTANTS: Benzene and Nitric Acid

CONDITIONS: 55°C and conc. sulfuric acid (H₂SO₄)

PRODUCT: Nitrobenzene

REACTION TYPE: Electrophilic Substitution, *Nitration*

Mechanism

Nitronium (NO_2^+) ion acts as an electrophile due to its positively charged nitrogen atom accepting an electron pair from the delocalised ring of electrons in the benzene ring. A Carbon-nitrogen bond forms. The carbon-hydrogen bond breaks to give electron pair back to delocalised ring of electrons. NO_2^+ ion replaces H on benzene ring - substitution reaction.

$$NO_2^+$$
 $+$ NO_2 $+$ H^+

Notes:

Nitronium ion is formed by the reaction of concentrated nitric acid with concentrated sulfuric acid

$$HNO_3 + H_2SO_4 \longrightarrow H_2NO_3^+ + HSO_4^-$$

$$H_2NO_3^+ \longrightarrow NO_2^+ + H_2O$$

Nitronium Ion

H⁺ ion removed from benzene ring combines with hydrogen sulfate (HSO₄⁻) ion to reform catalyst H₂SO₄:

$$H^+ + HSO_4^- \rightarrow H_2SO_4^-$$

Organic Chemistry Revision Sheets Halogenoalkanes | Nucleophilic Substitution (with NH₃)

Reaction

REACTANTS: Halogenoalkane and Ammonia (NH₃)

CONDITIONS: Heat*, Ethanolic conditions

PRODUCT(S): Amine and Ammonium Halide Salt **REACTION TYPE:** Nucleophilic Substitution

Mechanism

Ammonia (NH₃) acts as a nucleophile, due to its lone pair of electrons on the nitrogen atom and attacks the partially positive carbon atom in the carbon-halogen bond. The carbon-halogen bond breaks, forming an (aliphatic) amine and ammonium halide salt. NH₂ group is **substituted** for the halogen group.

$$R - C - Br + Br - R - C - N - H + Br - R - C - N - H + [NH4] + Br - H + Br -$$

- Reaction must be carried out in ethanolic conditions (in ethanol, no water present), otherwise an alcohol is likely to form rather than the nitrile.
- *A sealed container containing reactants is heated (otherwise ammonia would escape due its high volatility).
- The amine formed in the reaction is actually a stronger base than ammonia, so an ammonium-alkyl salt may be formed. The amine can be obtained by adding sodium hydroxide to the mixture forcing the amine group to 'release' a H⁺ ion and become a neutral molecule.
- The strength of the carbon-halogen bond (bond enthalpy) determines the speed of the reaction. The stronger the bond, the slower the nucleophilic substitution reaction. *C-F bond is strongest, giving the slowest reaction; C-I bond is weakest, giving the fastest reaction.*

Reaction

REACTANTS: Halogenoalkane and Sodium Hydroxide, *NaOH* (for OH- ions)

CONDITIONS: Aqueous ('ag' - water present)

PRODUCT(S): Alcohol and Halide Ion (sodium halide salt if sodium hydroxide used)

REACTION TYPE: Nucleophilic Substitution

Mechanism

Hydroxide ion (OH⁻) acts as a nucleophile and attacks the partially positive carbon atom in the carbon-halogen bond. The carbon-halogen breaks, forming alcohol and halide ion. OH group is **substituted** for the halogen group.

- Reaction must be carried out in aqueous conditions (in water), otherwise an elimination reaction will occur and an alkene will be formed.
- The strength of the carbon-halogen bond (bond enthalpy) determines the speed of the reaction. The stronger the bond, the slower the nucleophilic substitution reaction. *C-F bond is strongest, giving the slowest reaction; C-I bond is weakest, giving the fastest reaction.*

Reaction

REACTANTS: Alkane and Halogen **CONDITIONS:** U.V (ultraviolet) light

PRODUCT(S): Halogenoalkane and Hydrogen Halide

REACTION TYPE: Free Radical Substitution

REACTION: (example of methane and chlorine)

$$CH_4 + Cl_2 \xrightarrow{u.v} CH_3Cl + HCl$$

ultraviolet light required

Mechanism

INITIATION STEP: Halogen molecule undergoes heterolytic fission to form radical species:

$$Cl_2 \xrightarrow{u.v} 2Cl \bullet$$

PROPAGATION STEP: Radical species reacts with alkane to form alkyl radical and HCl. Alkyl radical then reacts with halogen molecule, reforming another halogen radical, creating a **chain reaction**:

new radical formed

$$CH_4 + Cl \bullet \longrightarrow \bullet CH_3 + HCl$$
 $\bullet CH_3 + Cl_2 \longrightarrow CH_3Cl + Cl \bullet$

(new) radical formed

TERMINATION STEP: Radical species combine to end chain reaction:

- Heterolytic fission is the even breaking of a covalent bond (each bonded atom gets an electron and becomes a radical species).
- UV light provides the energy required for hetereolytic fission.
- Further substitution reactions can occur, eventually forming tetrachloromethane: chloromethane to dichloromethane to trichloromethane to tetrachloromethane

