

Moles (amounts of substance)

Mass	moles =	massmoles = golar mass $molar mass = g mol^{-1}$			
Solution	moles = con	centration	x volum	ne	concentration = mol dm ⁻³ volume = dm ³
Gas	pV = nRT	p = press V = volum	ure (Pa) ne (m³)	R = T =	= gas constant (8.31 J K ^{.1} mol ^{.1} , = temperature (K)

Energy, Enthalpy and Entropy

_		a = energy	c – specific heat (capacity ($\int a^{-1} K^{-1}$)				
Calorimetry	q = mc∆T	change (J or kJ)	$\Delta T = temperature$	change (K or °C)				
Bond Enthalpies	$\Delta H = \sum$ (bond energies of reactants) - \sum (bond energies of products)							
	$\Delta H = cha$	ange in enthalpy (k	'kJ mol ⁻¹), bond enthalpies = kJ mol ⁻¹)					
Enthalpy	enthalpy = ener	noles gy change (q)	enthalpy = kJ mol ⁻¹ energy change (q) =	kJ				
Gibbs Free Energy	$\Delta G = \Delta H - T\Delta S$ $\Delta G = Gibbs Free Energy (kJ mol-1) \Delta H = enthalpy change (kJ mol-1) \Delta H = enthalpy change (kJ mol-1) T = temperature (K)$							
	ΔG = - <i>RT</i> ln K	R = gas const In = natural log	t (8.31 J K ⁻¹ mol ⁻¹) K = rate constant ithm T =temperature (K)					
Entropy	ΔS = ∑S° (produ	rcts) - ∑S° (reacta	ants) $\Delta S = \text{entropy ch}$ $S^{\circ} = \text{standard entropy}$	nange (J K ⁻¹ mol ⁻¹) ntropy (J K ⁻¹ mol ⁻¹)				
Rates of Reaction								
Rate Equation	rate = k × [A]*[I	B]^y[C]^z Rate = xy,z = c	mol dm ⁻³ s ⁻¹ , [] = cor rders with respect to A,	ncentration B and C				
	chemistry	stu	dent.com —					

Equilibrium

Electrochemistry

Electromotive Force E	$\mathbf{E}_{cell} = \mathbf{E}_{reduction} - \mathbf{E}_{oxidation}$		$E_{cell} = EMF$ (electromotive force) of electrochemical cell (V) $E_{redution} = standard$ electrode potential of cathode $E_{oxidation} = standard$ electrode potential of anode				
			Conditions for standard elec	ctrode potentials = 298K, 1 mol dm ⁻³ and 100kPa			
Faraday Constant	F = L e $F = Faraday \text{ constant } (9.65 \times 10^4 \text{ coulombs per mole})$ $L = Avagadros \text{ constant } (6.022 \times 10^{23})$ $e = charge of an electron (1.60 \times 10^{-19} \text{ coulombs})$						
		e enarge e					
Coulombs	Q = I t	$Q = coulombs (unit of charge)$ $I = current (c s^{-1})$ $t = time (c)$					
		l = liffe (3)					
Nernst Equation	$\mathbf{E} = \mathbf{E}^{\Theta} + (0.059/z)\log \frac{[\alpha]}{[r]}$		xidised species]	E = electrode potential (v) $E^{\theta} =$ standard electrode potential (v) z = number of electrons transferred			
			eaucea speciesj	[] = concentration (mol dm-3)			
Electrochomistry		1.00					
(feasibility)	$\Delta G^{\theta} = -n$	$\mathbf{E}_{\mathbf{cell}}^{\mathbf{\theta}} \mathbf{F} \qquad \begin{array}{c} \Delta G^{\mathbf{\theta}} = \\ E_{cell} = 0 \end{array}$	Gibbs free energy (sta cell potential (standaro	andard) n = number of moles) F = Faraday constant			

Assorted

