Moles (amounts of substance)

Mass

$$
\text { moles }=\frac{\text { mass }}{\text { molar mass }}
$$

moles = g
molar mass $=\mathrm{g} \mathrm{mol}^{-1}$

Solution moles $=$ concentration x volume
concentration $=\mathrm{mol} \mathrm{dm}{ }^{-3}$ volume $=d m^{3}$
$\begin{array}{ll}\text { Gas } \quad \mathbf{p V}=\mathbf{n R T} & \begin{array}{l}p=\operatorname{pressure}(\mathrm{Pa}) \\ V=\operatorname{volume}\left(\mathrm{m}^{3}\right)\end{array} \quad \begin{array}{l}R=\text { gas constant }\left(8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)\end{array} \\ & T=\text { temperature }(\mathrm{K})\end{array}$

Energy, Enthalpy and Entropy

Calorimetry
$q=m c \Delta T$
q = energy change
$c=$ specific heat capacity $\left(J g^{-1} K^{-1}\right)$
(J or KJ) $\quad \Delta T=$ temperature change ($\mathrm{K} \mathrm{or}^{\circ} \mathrm{C}$)

Bond Enthalpies
$\Delta \mathrm{H}=\sum$ (bond energies of reactants) $-\sum$ (bond energies of products)

$$
\left.\Delta H=\text { change in enthalpy }\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \text {, bond enthalpies }=\mathrm{kJ} \mathrm{~mol}^{-1}\right)
$$

Enthalpy

$$
\text { enthalpy }=\frac{\text { moles }}{\text { energy change (q) }}
$$

enthalpy $=\mathrm{KJ} \mathrm{mol}^{-1}$
energy change (q) $=k J$

Gibbs Free Energy

$$
\Delta G=\Delta H-T \Delta S
$$

$$
\begin{array}{lll}
\boldsymbol{\Delta} \mathbf{G}=\mathbf{-} \boldsymbol{R} \boldsymbol{T} \ln \mathbf{K} & \begin{array}{l}
R=\text { gas constant }\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
\mathrm{In}=\text { natural logarithm }
\end{array} & \begin{array}{l}
K=\text { rate constant } \\
\end{array}
\end{array}
$$

Entropy

$$
\Delta \mathbf{S}=\Sigma \mathbf{S}^{\circ}(\text { products })-\Sigma \mathbf{S}^{\circ} \text { (reactants) }
$$

$$
\begin{aligned}
& \Delta S=\text { entropy change }\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \mathrm{S}^{\ominus}=\text { standard entropy }\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$

$$
\boldsymbol{\Delta} \mathbf{S}_{\text {(Total) }}=\boldsymbol{\Delta} \mathbf{S}_{\text {(System) }}+\boldsymbol{\Delta} \mathbf{S}_{\text {(Surroundings) }} \Delta S S_{\text {sentropy change }\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)}=\text { entropy change of react }
$$

$$
\Delta \mathbf{S}_{\text {(Surroundings) }}=\frac{\mathbf{\Delta \mathbf { H }}}{\mathbf{T}} \begin{aligned}
& \Delta S_{\text {(surroundings }}=\text { entropy change of surroundings }\left(\boldsymbol{k J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \begin{array}{l}
\Delta=\text { enthalpy change }\left(\mathrm{KJ} \mathrm{~mol}^{-1}\right)
\end{array} \\
& \hline \text { temperature }(\mathrm{K})
\end{aligned}
$$

Equilibrium

Equilibrium Constant $\mathbf{K}_{\mathbf{c}} \quad \mathbf{K}_{\mathbf{c}}=\frac{[\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^{\mathrm{d}}}{[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^{\mathbf{b}}} \quad \begin{aligned} & \text { For the equilibrium } a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons \mathrm{l}=\mathrm{concentration}\end{aligned} \quad \mathrm{dD}$

Equilibrium Constant \mathbf{K}_{p}

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\boldsymbol{P}_{\mathrm{C}}\right)^{\mathrm{c}} \mathbf{x}\left(\boldsymbol{P}_{\mathrm{D}}\right)^{\mathrm{d}}}{\left(\boldsymbol{P}_{A}\right)^{\mathrm{a}} \mathbf{x}\left(\boldsymbol{P}_{B}\right)^{\mathrm{b}}}
$$

$$
\begin{aligned}
& \text { For the equilibrium } a A_{(g)}+b B_{(g)} \rightleftharpoons c C_{(g)}+d D_{(g)} \\
& \boldsymbol{P}=\text { partial pressure }\left(P_{z)}\right)
\end{aligned}
$$

$$
\boldsymbol{P}_{\boldsymbol{x}}=\text { partial pressure }(\mathrm{Pa})
$$

Rates of Reaction

Rate Equation

$$
\text { rate }=k \times[A]^{x}[B]^{y}[C]^{z}
$$

Rate $=$ mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1},[]=$ concentration $x, y, z=$ orders with respect to A, B and C

Arrhenius Equation
 $$
k=A e^{\frac{-E_{s}}{R T}}
$$
 $$
k=\text { rate constant }
$$
 $$
A=\text { constant } \quad T=\text { temperature }
$$
 $$
\ln \mathbf{k}=-\frac{\mathbf{E}_{\mathbf{a}}}{\mathbf{R} \mathbf{T}}+\ln \mathbf{A} \quad \ln =\text { natural logarithm }
$$

$$
E_{a}=\text { activation energy }\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)
$$

$$
e=\text { base of natural } \log R=\text { gas constant }\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)
$$

Acids, Bases and pH

Acid Dissociation Constant \mathbf{K}_{a}

$$
\mathbf{K}_{\mathrm{a}}=\frac{\left[\mathbf{H}_{\mathrm{apa}}^{+}\right]\left[\mathbf{A}_{\mathrm{apa}}^{-}\right]}{\left[\mathbf{H A}_{\mathrm{eap}}\right]} \quad \begin{aligned}
& \text { For the weak acid dissociation } \mathrm{HA} \rightleftharpoons H^{+}+\mathrm{A} \\
& {[]=\text { concentration }} \\
& \mathrm{K}_{\mathrm{a}}=\text { acid dissociation constant }\left(\mathrm{mol} \mathrm{dm}^{-3}\right)
\end{aligned}
$$

pKa

$$
\mathrm{pK}_{\mathrm{a}}=-\log _{10} \mathrm{~K}_{\mathrm{a}}
$$

Ionic Product of Water $\mathbf{K}_{\mathbf{w}}$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{\mathrm{a} 0 \mathrm{p}}^{+}\right]\left[\mathrm{OH}_{\mathrm{a} q}^{-}\right]
$$

$K_{w}=$ ionic product of water $\left(\mathrm{mol}^{2} \mathrm{dm}^{-6}\right)$ at $298 \mathrm{~K}, K_{w}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
pH pH =- $\log _{10}\left[\mathbf{H}_{\text {gea }}^{+}\right] \quad\left[H_{p e 0}^{+}\right]=$concentration of $H_{\infty \infty}^{+}$

$$
\left[\mathrm{H}_{\mathrm{e} 0}^{+}\right]=10^{-\mathrm{pH}}
$$

Chemistry Revision Sheets Equations for OCR

Electrochemistry

Electromotive Force $E_{\text {cell }}$
 $$
E_{\text {cell }}=E_{\text {reduction }}-E_{\text {oxidation }}
$$
 $E_{\text {cell }}=$ EMF (electromotive force) of electrochemical cell (V) $E_{\text {Iedution }}=$ standard electrode potential of cathode $E_{\text {oxdidion }}=$ standard electrode potential of anode
 Conditions for standard electrode potentials $=298 \mathrm{~K}, 1 \mathrm{~mol} \mathrm{dm}^{-3}$ and 100 kPa

Chromatography

Retention Factor \mathbf{R}_{f}

$R_{f}=$ no units
solvent front = distance travelled by solvent

Assorted

$$
\begin{array}{c|l}
\text { Atom Economy } & \text { Atom Economy }=\frac{\text { relative formula mass of desired product }}{\text { relative formula mass of all reactants }(\text { sum of })} \times 100 \\
\text { Percentage Yield } & \text { Percentage Yield }=\frac{\text { actual yield }}{\text { theoretical mass }} \times 100 \\
\text { Relative Atomic Mass } \mathbf{A}_{r} & \mathbf{A}_{r}=\frac{(\text { Isotope } 1 \text { mass } \times \% \text { abundance })+(\text { lsotope } 2 \text { mass } \times \% \text { abundance }) . . ~}{\text { total } \% \text { abundance }(100)}
\end{array}
$$

$$
\begin{array}{llll}
\text { Dilution } & \mathbf{V}_{\mathbf{i}} \mathbf{C}_{\mathbf{i}}=\mathbf{V}_{\mathbf{f}} \mathbf{C}_{\mathbf{f}} & V_{i}=\text { initial volume } & V_{f}=\text { final volume (after dilution) } \\
C_{i}=\text { initial concentration } & C_{f}=\text { final concentration (after dilution) }
\end{array}
$$

