


Reaction

REACTANTS: Alkene and H₂O **CONDITIONS:** Acid Catalyst **PRODUCT:** Alcohol **REACTION TYPE:** Electrophilic Addition, *Acid Catalysed Hydration*

Mechanism

 H_3O^+ acts as an electrophile because one of its H^{δ_+} atoms accepts an electron pair from the carbon-carbon double bond, causing H_2O to form from the H_3O^+ . The carbon-carbon double bond breaks, forming a postively charged carbon (carbocation). The lone pair of electrons on an oxygen atom in H_2O form a bond with the carbocation. Another water molecule removes a H^+ from the $-OH_2^+$ group and H_3O^+ is reformed. H_2O is 'added' across the carbon-carbon double bond - hydration. *Addition reaction.*

Notes:

• The reaction must be carried out in acidic conditions to form a H₃O⁺ (hydroxonium) ion.

$$H_2O + H^+ \rightarrow H_3O^+$$

- If a primary or secondary carbocation can be formed during the reaction, the secondary carbocation will form more readily than the primary carbocation - creating 'major' and 'minor' products*.
- The secondary carbocation is more stable due to an increased positive inductive effect from neighbouring alkyl chains.

student.com

• *The product mixture will contain more of the major than the minor product.

chemistry