

Reaction

REACTANTS: Alkene and H₂SO₄ (*Concentrated Sulfuric Acid*) **CONDITIONS:** Concentrated H₂SO₄ **PRODUCT:** Alkyl Hydrogensulfate **REACTION TYPE:** Electrophilic Addition

Mechanism

 H_2SO_4 acts as an electrophile because its hydrogen atoms have a large partial positive charge, so one of them accepts an electron pair from the carbon-carbon double bond. During the reaction the carbon-carbon double bond breaks, forming a postively charged carbon (carbocation). The negatively charged hydrogensulfate ion bonds with the carbocation. H and HSO₄ is 'added' across the carbon-carbon double bond. *Addition reaction.*

Notes:

- If a primary or secondary carbocation can be formed during the reaction, the secondary carbocation will form more readily than the primary carbocation - creating 'major' and 'minor' products*.
- The secondary carbocation is more stable due to increased positive inductive effect from neighbouring alkyl chains.
- Oxygen atoms in the sulfuric acid have lone pairs of electrons (not shown in the mechanism above).
- *The product mixture will contain more of the major product than the minor product.

chemistry

student.com