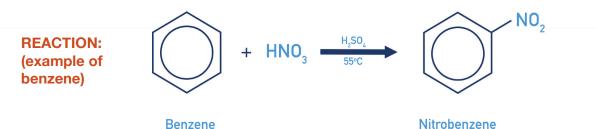


Organic Chemistry Revision Sheets

Benzene | Electrophilic Substitution, (Nitration, with HNO₂)


Reaction

REACTANTS: Benzene and Nitric Acid

CONDITIONS: 55°C and conc. sulfuric acid (H₂SO₄)

PRODUCT: Nitrobenzene

REACTION TYPE: Electrophilic Substitution, *Nitration*

Mechanism

Nitronium (NO_2^+) ion acts as an electrophile due to its positively charged nitrogen atom accepting an electron pair from the delocalised ring of electrons in the benzene ring. A Carbon-nitrogen bond forms. The carbon-hydrogen bond breaks to give electron pair back to delocalised ring of electrons. NO_2^+ ion replaces H on benzene ring - substitution reaction.

$$NO_2^+$$
 $+$ NO_2 $+$ H^+

Notes:

Nitronium ion is formed by the reaction of concentrated nitric acid with concentrated sulfuric acid

$$HNO_3 + H_2SO_4 \longrightarrow H_2NO_3^+ + HSO_4^-$$

$$H_2NO_3^+ \longrightarrow NO_2^+ + H_2O$$

Nitronium Ion

H⁺ ion removed from benzene ring combines with hydrogen sulfate (HSO₄⁻) ion to reform catalyst H₂SO₄:

$$H^+ + HSO_4^- \rightarrow H_2SO_4^-$$

