Reaction

REACTANTS: Carbonyl (aldehyde or ketone) and NaBH, or LiAlH,

PRODUCT: Alcohol

REACTION TYPE: Nucleophilic Addition, reduction

REACTION: (example of ketone)

$$R-C \nearrow 0$$
 $R^1 + 2[H]$
 $R-C-H$
 R^2

Alcohol (Secondary)

Mechanism

Hydride ion (:H⁻) comes from reducing agent (NaBH₄ or LiAlH₄*) and **acts as a nucleophile due to its lone pair of electrons attacking the carbon (with partial positive charge) in the carbonyl group**. A carbon-hydrogen bond forms. The carbon-oxygen double bond breaks to a single bond, giving the oxygen a negative charge. The negative oxygen is protonated by water, forming a hydroxyl group and a hydroxide ion. Alcohol is formed, H is added to the carbonyl. *Addition reaction.*

$$R \xrightarrow{\delta_{+}} \stackrel{\delta_{-}}{0} \xrightarrow{\delta_{-}} \qquad \qquad OH$$

$$R \xrightarrow{\delta_{+}} \stackrel{\delta_{-}}{0} \xrightarrow{\delta_{-}} \qquad R \xrightarrow{\delta_{-}} \qquad R \xrightarrow{\delta_{-}} \qquad R \xrightarrow{\delta_{-}} \qquad R \xrightarrow{\delta_{-}} \qquad H$$

Notes:

- Aldehydes form primary alcohols when reduced.
- Ketones form secondary alcohols when reduced.
- *NaBH₄ and LiAlH₄ are reducing agents, they are able to provide hydride (:H·) ions that are needed for the reduction of carbonyls.

