

Reaction

REACTANTS: Alkane and Halogen **CONDITIONS:** U.V (ultraviolet) light **PRODUCT(S):** Halogenoalkane and Hydrogen Halide **REACTION TYPE:** Free Radical Substitution

Mechanism

INITIATION STEP: Halogen molecule undergoes heterolytic fission to form radical species:

PROPAGATION STEP: Radical species reacts with alkane to form alkyl radical and HCI. Alkyl radical then reacts with halogen molecule, reforming another halogen radical, creating a **chain reaction**:

Notes:

• Heterolytic fission is the even breaking of a covalent bond (each bonded atom gets an electron and becomes a radical species).

student.com

• UV light provides the energy required for hetereolytic fission.

chemistry

• Further substitution reactions can occur, eventually forming tetrachloromethane: chloromethane to dichloromethane to trichloromethane to tetrachloromethane