AP | A-Level | IB | NCERT 11 + 12 – FREE NOTES, RESOURCES AND VIDEOS!
*Revision Materials and Past Papers* 1 Atomic Structure 2 Amounts of Substance 3 Bonding 4 Energetics 5 Kinetics 6 Chemical Equilibria & Kc 7 Redox Equations 8 Thermodynamics 9 Rate Equations 10 Kp (Equilibrium Constant) 11 Electrode Potentials & Cells 12 Acids and Bases 13 Periodicity 14 Group 2: Alkaline Earth Metals 15 Group 7: The Halogens 16 Period 3 Elements & Oxides 17 Transition Metals 18 Reactions of Ions in Aqueous Solution 19 Intro to Organic Chemistry 20 Alkanes 21 Halogenoalkanes 22 Alkenes 23 Alcohols 24 Organic Analysis 25 Optical Isomerism 26 Aldehydes & Ketones 27 Carboxylic Acids & Derivatives 28 Aromatic Chemistry 29 Amines 30 Polymers 31 Amino Acids, Proteins & DNA 32 Organic Synthesis 33 NMR Spectroscopy 34 Chromatography RP1–RP12 Required Practicals

1.3 Bonding

1.3.1 Ionic Bonding 1.3.2 Covalent Bonding 1.3.3 Metallic Bonding 1.3.4 Bonding and Physical Properties 1.3.5 Shapes of Molecules 1.3.6 Bond Polarity 1.3.7 Forces Between Molecules

Shapes of Simple Molecules and Ions

Specification Reference Physical Chemistry, Bonding 3.1.3.5

Quick Notes

  • Electron pairs around a central atom repel and arrange themselves as far apart as possible to minimise repulsion, giving different bonding shapes and arrangements.
  • Repulsion order: Lone pair–lone pair > lone pair–bond pair > bond pair–bond pair.
  • The shape of a molecule is determined by the number of bonding and lone pairs around the central atom.
  • Common shapes and bond angles:
    • Linear (180°) – e.g. CO2
    • Bent (104°) – e.g. H2O
    • Trigonal planar (120°) – e.g. BF3
    • Trigonal pyramidal (107°) – e.g. NH3
    • Tetrahedral (109.5°) – e.g. CH4
    • Square planar (90°) – e.g. XeF4
    • Trigonal bipyramidal (90°, 120°, 180°) – e.g. PCl5
    • Octahedral (90°, 180°) – e.g. SF6

Full Notes

Electron Pair Repulsion Theory

The shape of a molecule can be predicted based on the number of bonds and lone pairs around the central atom. Bonds and lone pairs are considered regions of electron density.

Common Molecular Shapes and Bond Angles

Quick Reference Summary Table at Bottom of Page

Linear (180°)

2 bonding pairs, no lone pairs → bonds remain in a straight line.

AQA A-Level Chemistry diagram showing linear shape with 180° bond angle

Trigonal Planar (120°)

3 bonding pairs, no lone pairs → flat triangle arrangement.

Examples: BF3, NO3

AQA A-Level Chemistry diagram showing trigonal planar shape with 120° bond angle

Tetrahedral (109.5°)

4 bonding pairs, no lone pairs → 3D tetrahedral shape.

Examples: CH4, NH4+

AQA A-Level Chemistry diagram showing tetrahedral shape with 109.5° bond angle

Trigonal Pyramidal (107°)

3 bonding pairs, 1 lone pair → bond angle reduced due to lone pair repulsion.

Examples: NH3, PCl3

AQA A-Level Chemistry diagram showing trigonal pyramidal shape with 107° bond angle

Bent (104.5°)

2 bonding pairs, 2 lone pairs → bond angle reduced further by two lone pairs.

Examples: H2O, OF2

AQA A-Level Chemistry diagram showing bent V-shaped structure with 104.5° bond angle

Trigonal Bipyramidal (90°, 120°, 180°)

5 bonding pairs, no lone pairs → atoms arranged in two layers.

Example: PCl5

AQA A-Level Chemistry diagram showing trigonal bipyramidal shape with bond angles of 90°, 120°, and 180°

Octahedral (90°, 180°)

6 bonding pairs, no lone pairs → symmetrical 3D shape.

Example: SF6

AQA A-Level Chemistry diagram showing octahedral shape with 90° and 180° bond angles

Square Planar (90°)

4 bonding pairs, 2 lone pairs → lone pairs opposite, minimising repulsion.

Example: XeF4

AQA A-Level Chemistry diagram showing square planar structure with 90° bond angles

Effect of Lone Pairs on Bond Angles

Lone pairs repel bonding pairs more than bonding pairs repel each other. This pushes bonding pairs closer together and reduces bond angles.

AQA A-Level Chemistry diagram showing how lone pairs affect bond angles
Lone Pairs Present Bond Angle Reduction Example
0 No reduction CH4 (109.5°)
1 ~2.5° smaller NH3 (107°)
2 ~5° smaller H2O (104.5°)

Application in Ions

The same rules as above apply for polyatomic ions.

For Example:

Summary

Shape Bond Angle Lone Pairs? Example
Linear 180° No CO2
Trigonal Planar 120° No BF3
Tetrahedral 109.5° No CH4
Trigonal Pyramidal 107° 1 NH3
Bent (V‑Shaped) 104.5° 2 H2O
Trigonal Bipyramidal 90° & 120° No PCl5
Seesaw <90° & <120° 1 SF4
T‑Shaped <90° 2 ClF3
Octahedral 90° No SF6
Square Pyramidal <90° 1 BrF5
Square Planar 90° 2 XeF4